1. Write an iterated integral for $\iiint_{D} f(x, y, z) d V$ where D is a sphere of radius 9 centered at $(0,0,0)$ using the order $d z d x d y$.
2. Evaluate the integral $\int_{-1}^{3} \int_{2}^{5} \int_{1}^{e} \frac{x^{2} y^{2}}{z} d z d x d y$.
3. Set up and then use a triple integral to find the volume of the solid bounded by the surfaces $z=2 e^{y}$ and $z=2$ over the rectangle $\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq \ln 4\}$.

4. Evaluate the integral $\int_{0}^{1} \int_{0}^{3} \int_{4 y}^{12} \frac{4 \cos \left(x^{2}\right)}{5 \sqrt{z}} d x d y d z$ by rewriting the order of integration inn an appropriate way.
5. Evaluate the following integral in cylindrical coordinates $\int_{0}^{2} \int_{0}^{\frac{3 \sqrt{2}}{2}} \int_{x}^{\sqrt{9-x^{2}}} e^{-x^{2}-y^{2}} d y d x d z$.
6. Use cylindrical coordinates to find the volume of the region bounded by the plane $z=\sqrt{41}$ and the hyperboloid $z=\sqrt{25+x^{2}+y^{2}}$.

7. Find the mass of the ball of radius 2 centered at the origin with a density of $f(\rho, \varphi, \theta)=7 e^{-\rho^{3}}$.
8. Find the center of mass of the triangular plate in the first quadrant bounded by $y=x, x=0$, and $y=2-x$ with $\rho(x, y)=18 x+6 y+9$.
9. Find the center of mass for the interior of the prism formed by $z=x, x=4, y=1$ and the coordinate planes with density $\rho(x, y, z)=3+y$.
10. Which of the following is a vector field for $\mathrm{F}=\langle 2 y, 2 x\rangle$?

○ .

B.

OD.

11. Give an example of a component vector field F on \mathbb{R}^{2} where F is everywhere normal to the line $y=3$.
12. Find the gradient field $\mathrm{F}=\nabla \varphi$ for the potential function $\varphi(x, y, z)=\ln \left(4 x^{2}+y^{2}+4 z^{2}\right)$.
13. Integrate the line integral $\int_{C}(y-z) d s$ where C is the helix $\langle 8 \cos t, 8 \sin t, t\rangle$ with $-2 \pi \leq t \leq 0$.
14. Integrate the line integral $\int_{C} \frac{x}{x^{2}+y^{2}} d s$ where C is the line segment from $(1,1)$ to $(33,33)$.
15. Consider the vector field $\mathrm{F}=\langle y-x, x\rangle$ and the curve $C: \mathbf{r}(t)=\langle 5 \cos t, 5 \sin t\rangle$ for $0 \leq t \leq 2 \pi$. Find the circulation and the flux.
16. Determine if $\mathrm{F}=\langle 2 y z, 2 x z, 2 x y\rangle$ is a conservative vector field on \mathbb{R}^{3}. If so, find the potential function $\varphi(x, y, z)$.
17. Evaluate the line integral $\int_{C} \nabla \varphi \bullet d \mathbf{r}$ using the Fundamental Theorem for line integrals where $\varphi(x, y)=x y$ and $C: \mathbf{r}(t)=\langle\sin t, \cos t\rangle$ for $0 \leq t \leq \frac{\pi}{3}$.
18. Evaluate the line integral $\int_{C} \nabla \varphi \bullet d \mathbf{r}$ using the Fundamental Theorem for line integrals where

$$
\varphi(x, y, z)=\frac{x^{2}+y^{2}+z^{2}}{2} \text { and } C: \mathbf{r}(t)=\left\langle\cos t, \sin t, \frac{t}{\pi}\right\rangle \text { for } \frac{\pi}{6} \leq t \leq \frac{3 \pi}{2}
$$

19. Evaluate $\oint_{C} \mathrm{~F} \cdot d \mathbf{r}$ for the vector field $\mathrm{F}=\langle-x-z, y+z, y-x\rangle$ and the closed curve $C: \mathbf{r}(t)=\langle-\sin t,-\sin t, \cos t\rangle$ for $0 \leq t \leq 2 \pi .$.
20. Assume C is a circle centered at the origin, oriented counterclockwise, that encloses disk R in the plane. Find both the two-dimensional curl of F and the two-dimensional divergence of F given $\mathrm{F}=\left\langle 6 x^{6} y, 8 x y^{3}+8 x^{7}\right\rangle$.
21. Use Green's Theorem circulation form to evaluate $\oint_{C} \mathrm{~F} \cdot d \mathbf{r}$, where $\mathrm{F}=\left\langle 4 x y^{2}, 6 x^{3}+y\right\rangle$ and C is oriented counterclockwise and is the boundary of $\{(x, y) \mid 0 \leq y \leq \sin x, 0 \leq x \leq \pi\}$.
22. Compute the outward flux of $\mathrm{F}=\langle y \cos x,-\sin x\rangle$ across the boundary of R which is oriented counterclockwise. R is the square $\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{\pi}{2}\right., 0 \leq y \leq \frac{\pi}{2}\right\}$.
23. Find div F for the vector field $\mathrm{F}=\left\langle 2 x^{2} y z,-2 x y^{2} z,-2 x y z^{2}\right\rangle$.
24. Compute the curl of $\mathrm{F}=\left\langle 2 x^{2}-y^{2}, 2 x y, z\right\rangle$
