1. Consider the parametric equations: ${ }^{x=(t+3)^{2}}$ for $-10 \leq t \leq 10$. Eliminate the $y=t+7$
parameter. Describe the curve and indicate the positive orientation by stating the starting ordered pair and the ending ordered pair.
2. Consider the parametric equations: $\begin{aligned} & x=6 \cos t \\ & y=6 \sin t\end{aligned}$ for $\pi \leq t \leq 2 \pi$. Eliminate the parameter. Describe the curve and indicate the positive orientation by stating the starting ordered pair and the ending ordered pair.
3. Find parametric equations for the complete curve $x=-4 y^{3}-y$, include the interval for the parameter.
4. Find parametric equations for the line segment that moves from $(-4,-2)$ to $(2,4)$, include the interval for the parameter.
5. Find $\frac{d y}{d x}$ for the parametric curve $\begin{aligned} & x=3 t \\ & y=t^{5}\end{aligned}$ then evaluate $\frac{d y}{d x}$ at $t=2$.
6. Find the equation of the tangent line to the curve given by $\begin{aligned} & x=\cos t+t \sin t \\ & y=\sin t-t \cos t\end{aligned}$ at $t=\frac{3 \pi}{4}$.
7. Find the arc length of the curve given by $\begin{aligned} & x=2 t^{3} \\ & y=3 t^{2}\end{aligned}$ where $0 \leq t \leq \sqrt{8}$.
8. Name two other ordered pairs, one with a positive r and one with a negative r that represents the same point as $\left(-3,-\frac{\pi}{3}\right)$.
9. Write the polar point $\left(-2, \frac{-11 \pi}{6}\right)$ in Cartesian coordinates.
10. Write the Cartesian point $(5 \sqrt{3}, 5)$ in polar form with $0 \leq \theta \leq 2 \pi$.
11. Find $\frac{d y}{d x}$ for the polar curve $r=7-7 \sin \theta$. Then evaluate the derivative at the point $\left(14, \frac{3 \pi}{2}\right)$.
12. Find $\frac{d y}{d x}$ and the points at which the polar curve $r=3 \cos \theta$ has a vertical or horizontal tangent line.
13. Find the area inside one leaf of $r=5 \cos 3 \theta$.
14. Given the polar equations $r=16+16 \sin \theta$ and $r=16+16 \cos \theta$ find all points of intersection and the area that lies inside both curves (not just the overlapping portion).
15. Find the area of the region outside $r=3$ and inside $r=-6 \cos \theta$.
16. Find the length of the curve $r=\frac{20}{1+\cos \theta}$ on the interval $0 \leq \theta \leq \frac{\pi}{2}$.
17. Given the equation of the ellipse $5 x^{2}+7 y^{2}=35$, write in standard form then find the coordinates of the foci and the length of both the major and minor axis.
18. Find an equation of the hyperbola with foci $(-13,0)$ and $(13,0)$; and vertices at $(12,0)$ and $(-12,0)$.
19. Find the equation of the tangent line to the curve $y^{2}-\frac{x^{2}}{64}=1$ at the point $\left(6, \frac{5}{4}\right)$.
20. Given the points $Q(-5,1), T(3,2), P(-2,-3), U(6,-2), R(0,-1)$, and $S(-4,-4)$ find the vectors $\overrightarrow{Q T}, \overrightarrow{P U}$, and $\overrightarrow{R S}$. Are any of these vectors equal?
21. Find a vector in the direction of $\langle 6,-8\rangle$ that has a magnitude of 4 .
22. An airplane flies horizontally from east to west at 282 mph relative to the air. If is flies in a steady 38 mph wind that blows horizontally toward the southwest (45° south of west), find the speed and direction of the airplane relative to the ground.
23. Suppose you are pulling a suitcase with a strap that makes a 30° angle with the horizontal. The magnitude of the force you exert on the suitcase is 24 lb . Find the horizonal and vertical components of the force.
24. Find the equation of the sphere that passes through $P(-8,7,8)$ and $Q(2,-1,7)$ with its center at the midpoint of $P Q$.
25. Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-14 x+6 y-10 z+58=0$.
26. Given the vectors $\mathbf{u}=\langle 5,3,7 \sqrt{3}\rangle$ and $\mathbf{v}=\langle 1,0,8 \sqrt{3}\rangle$ find the following: $4 \mathbf{u}+2 \mathbf{v}$, $3 \mathbf{u}-\mathbf{v}$, and $|\mathbf{u}+3 \mathbf{v}|$.
27. Find two vectors parallel to the vector \mathbf{v} with a length of $42 . \mathbf{v}=\overrightarrow{P Q}$ with $P(5,5,3)$ and $Q(4,1,8)$.
28. Given $\mathbf{u}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$, find $\mathbf{u} \cdot \mathbf{v}$ and the angle between the vectors.
29. Given the vectors $\mathbf{u}=\langle-7,0,4\rangle$ and $\mathbf{v}=\langle 1,2,-2\rangle$ find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
30. Find the value of c so that the vectors $\langle 2,-3, c\rangle$ and $\langle 1,-4,-3\rangle$ are orthogonal.
31. Find a vector normal to the vectors $\langle 7,0,4\rangle$ and $\langle-8,3,2\rangle$.
32. Find both the vector equation and the parametric equations of the line through $(-3,1,4)$ and $(4,-2,0)$, let $t=0$ correspond to the first point.
33. Determine if the lines $\mathbf{r}_{1}=\langle 1,4,3\rangle+t\langle 7,-5,-3\rangle$ and $\mathbf{r}_{2}=\langle 7,6,15\rangle+s\langle 3,1,6\rangle$ are parallel, intersect at a single point, or are skew. If they are parallel determine if they are the same line (intersecting at every point). If the lines intersect at a single point, find the point.
34. Determine if the lines $x=2, \quad y=6-t, \quad z=1+t$ and $x=-2-4 s, \quad y=1+5 s, \quad z=4-s$ are parallel, intersect at a single point, or are skew. If they are parallel determine if they are the same line (intersecting at every point). If the lines intersect at a single point, find the point.
35. Use the fact that $d=\frac{|\mathbf{v} \times \overrightarrow{P Q}|}{\mathbf{v}}$ to find the distance from the point $(2,-1,1)$ to the line $x=-1-t, \quad y=1-2 t, \quad z=-6+3 t$.
36. Find the equation of the plane parallel to the vectors $\langle 2,0,3\rangle$ and $\langle 0,3,3\rangle$ passing through the point $(3,0,-1)$.
37. Determine if the planes $4 x+4 y+2 z=23$ and $-4 x-3 y+14 z=23$ are parallel, orthogonal or neither.
38. Find the equation of the line where the planes $2 x-3 y+z=1$ and $x+y+z=0$ intersect, if it exists.
39. Find the point, if it exists, at which the plane $y=-8$ and the line $\mathbf{r}=\langle 4 t+1,-t+5, t-6\rangle$ intersect.
40. Find the smallest angle between the planes $7 x+4 y-z=0$ and $-5 x+2 y+2 z=0$.
41. Consider the equation of the quadric surface $\frac{y^{2}}{36}+100 z^{2}-\frac{x^{2}}{25}=4$. Find the equations of the $x y-$ - $x z-$, and $y z$-traces. Identify the surface.
42. Write the equation $-x^{2}-y^{2}+\frac{z^{2}}{4}+8 x-6 y=29$ in standard form of one of the quadric surfaces. Identify the surface and it's center.
