1. Find $\frac{d y}{d x}$ for each of the following functions.
a. $f(x)=\sin ^{-1}(\cos x)$
b. $f(x)=x^{2} \pi^{x}$
c. $f(x)=(x+1)^{e^{2 x}}$
d. $f(x)=10^{\csc 3 x}$
e. $f(x)=\log _{5}\left(x^{2}-2 x+1\right)$
f. $y=e^{\sin ^{-1}(8 x)}$
g. $y=\sqrt{\cos ^{-1} 9 x}$
h. $\cos (x y)=3$
2. If $f(x)=3-|x-4|$, then $f(1)=f(7)$ but $f^{\prime}(x) \neq 0$ for any $x \in[1,7]$. Does this contradict Rolle's Theorem? Why or why not?
3. Verify that the Mean Value Theorem applies to the function $f(x)=\sqrt{10 x}$ on the interval $[0,10]$ an then find the value c such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
4. Let $f(x)=x e^{x}$
a. Find all critical numbers (x-values)
b. Use the second derivative test to determine the relative extrema. Label the extrema as relative maximum or relative minimum. (Note: extrema are ordered pairs.)
5. Given $f(x)=\sin x \cos x$ find:
a. absolute max on $[0, \pi]$ (ordered pair(s))
b. absolute \min on $[0, \pi]$ (ordered pair(s))
6. Find a function that has vertical asymptotes at $x= \pm 1,0$ and a horizontal asymptote at $y=\frac{2}{3}$.
7. Let $f(x)=\frac{3 x^{3}+11 x^{2}+11 x+2}{x^{2}-4}$. Find all asymptotes.
8. Consider the statement: If $f(x)$ is a function that is differentiable everywhere and $f^{\prime}(3)=0$, then $(3, f(3))$ is relative extrema of $f(x)$. Is this statement true or false. Explain your answer.
9. Find the relative extrema for the function $f(x)=x^{\frac{2}{3}}(x-2)^{2}$.
10. Given $f(x)=x^{4}-4 x^{3}+10$
a. Find $f^{\prime}(x)=$ \qquad
b. list all critical numbers \qquad
c. Use the first derivative test to determine if the critical number(s) give relative extrema. Give the ordered pair and label.
d. on which intervals is $f(x)$ increasing? \qquad
e. on which intervals is $f(x)$ decreasing? \qquad
f. Find $f^{\prime \prime}(x)=$ \qquad
g. on which intervals is $f(x)$ concave up? \qquad
h. on which intervals is $f(x)$ concave down? \qquad
i. inflection points (ordered pair)
11. Sketch the graph that yields the following:
$f(0)=4, f(3)=1$, and $f(4)=3$
$f^{\prime}(0)=f^{\prime}(4)=0$
$f^{\prime}(3) \mathrm{DNE}$
$f^{\prime}(x)>0$ on $(3,4)$
$f^{\prime}(x)<0$ on $(-\infty, 0),(0,3)$, and $(4, \infty)$
$f^{\prime \prime}(0)=0$
$f^{\prime \prime}(3)$ DNE
$f^{\prime \prime}(x)>0$ on $(-\infty, 0)$
$f^{\prime \prime}(x)<0$ on $(0,3)$ and $(3, \infty)$
12. Let $f "(x)=3 x^{2}-9$ and let $f(x)$ have critical numbers $x=-3,0,3$. Use the second derivative test to determine which critical numbers if any give relative extrema.
13. Gravitational force is inversely proportional to the distance between two objects squared. If $F=\left(\frac{54}{d^{2}}\right)$ where F is the gravitational force and d is the distance. How fast is the force diminishing at the instant the objects are 3 meters apart and moving at $2.2 \mathrm{~m} / \mathrm{s}$?
14. Calculate Δy and $d y$ for $f(x)=\frac{1}{x^{2}}$ when $x=2$ and $\Delta x=-.1$. (Round answers to 5 decimal places where needed.)
15. The management of a large store has 1600 feet of fencing to fence in a rectangular storage yard using the building as one side of the yard. If the fencing is used for the remaining 3 sides, find the dimensions that will give maximize the area of the yard. What is the area?
16. A poster is to contain $96 \mathrm{in}^{2}$ of printed matter with margins of 4 inches each at top and bottom and 3 inches each to the left and right. Find the dimensions of the printed portion if the total area of the poster is to be a minimum.
17. Prove one of the following:
a. $\frac{d}{d x}\left(\sin ^{-1} u\right)=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
b. $\frac{d}{d x}\left(\tan ^{-1} u\right)=\frac{u^{\prime}}{1+u^{2}}$
c. $\frac{d}{d x}\left(\sec ^{-1} u\right)=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
