SHOW ALL WORK. If no, or insufficient work is shown you will not receive credit. All answers must be in exact form (no decimal approximations).

1. Find $\lim _{x \rightarrow 4}\left(\frac{3}{4} x+5\right)=$ \qquad
Prove the above limit. [Hint: find δ first.]
2. Find $\lim _{x \rightarrow-2} x^{2}-2 x$. Then find the δ required so that $|f(x)-L|<\varepsilon$ where $\varepsilon=.002$.
3. The function in the figure satisfies $\lim _{x \rightarrow 6} f(x)=4$. Determine what values of $\delta>0$, where $\delta>0$ satisfies each statement.
a) If $0<|x-6|<\delta$, then $|f(x)-4|<1$.
b) If $0<|x-6|<\delta$, then $|f(x)-4|<.5$.

4. Use the graph to answer the following:

a) $\lim _{x \rightarrow 2^{+}} f(x)$
b) $\lim _{x \rightarrow 2^{-}} f(x)$
c) $\lim _{x \rightarrow 2} f(x)$
d) $f(2)$
e) $\lim _{x \rightarrow 4^{+}} f(x)$
5. Let $f(x)=\frac{x-7}{x^{2}-49}$. Is $f(x)$ continuous at $x=7$? If your answer is yes show how $f(x)$ meets all three conditions to be continuous at a point. If your answer is no show how the three conditions are not all met.
6. Let $f(x)=\frac{3 x}{x^{4}+1}$. Is $f(x)$ continuous at $x=-1$? If your answer is yes show how $f(x)$ meets all three conditions to be continuous at a point. If your answer is no show how the three conditions are not all met.
7. Sketch a single function, $f(x)$, that meets the following criteria:
$f(x)$ has a jump discontinuity at $x=-2$.
$f(x)$ has a removable discontinuity at $x=1$.
$f(x)$ has an infinite discontinuity at $x=3$.
has only the above points of discontinuity.
8. Sketch a single function, $f(x)$, that meets the following criteria:

$$
\lim _{x \rightarrow \infty} f(x)=3 \quad \lim _{x \rightarrow-\infty} f(x)=-3
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\infty \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty
$$

9. Let $f(x)= \begin{cases}\sin 2 x & x \geq 0 \\ x^{3}-x+1 & x<0\end{cases}$
list the points of discontinuity (if any) \qquad classify the points of discontinuity as removable, jump, or infinite \qquad
10. Let $f(x)=\frac{\frac{1}{x+4}-\frac{1}{4}}{x}$.
list the points of discontinuity (if any) \qquad
classify the points of discontinuity as removable, jump, or infinite \qquad
11. Find the following limits. To receive credit you must show algebraic work. Use $\pm \infty$ where appropriate.
a) $\lim _{x \rightarrow 0} \frac{1-e^{-x}}{1+e^{x}}$
b) $\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-4(x+h)+1-\left(3 x^{2}-4 x+1\right)}{h}$
c) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4}$
d) $\lim _{x \rightarrow 1} \frac{1-x}{x^{2}+2 x-3}$
e) $\lim _{x \rightarrow 0} \frac{\frac{1}{2+\sin x}-\frac{1}{2}}{\sin x}$
12. Find the following limits by any means. Use $\pm \infty$ where appropriate.
a) $\lim _{x \rightarrow \pi} x \sec x$
b) $\lim _{x \rightarrow \infty} \sec ^{-1}(x)$
c) $\lim _{x \rightarrow 1^{+}} \frac{x^{2}+2 x+1}{x-1}$
d) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-10 x+3}{2 x^{3}-2 x+4}$
e) $\lim _{x \rightarrow 0} \frac{x}{\sin 3 x}$
f) $\lim _{x \rightarrow 0^{+}} \ln x$
g) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}+3}}$
13. Determine whether the following statements are true or false. If it is true explain why it is true. If it is false, give an example to show that it is false.
a) A rational function has at least one vertical asymptote.
b) If $f(x)=g(x)$ for all real numbers other than $x=0$, and $\lim _{x \rightarrow 0} f(x)=L$, then $\lim _{x \rightarrow 0} g(x)=L$.
14. Suppose $f(x)$ is continuous on the interval $(0,2)$ and never equal to zero there, and that $f(1)>0$. What can you say, if anything, about the sign of $f(x)$ on the interval $(0,2)$?
15. Can the Intermediate Value Theorem be used to show $f(x)=x \ln x-1$ has a zero on $(1, e)$? If not, explain why not. If IVT can be used show how.
16. Given that $1-\frac{x^{2}}{6} \leq f(x) \leq 1$ find $\lim _{x \rightarrow 0} f(x)$.
17. Determine values of c and d so that the function is continuous everywhere.

$$
f(x)= \begin{cases}4 x & x<-1 \\ c x+d & -1 \leq x \leq 2 \\ -5 x & x>2\end{cases}
$$

