Luczak

MTH-129 Answers to Review for Test 2

Please note that some steps have been left out (mostly algebraic) that I would expect to see on a test.

1. Since $a \mid b$ means b = ar, $r \in \mathbb{Z}$ and $a \mid c$ means c = as, $s \in \mathbb{Z}$ then 5b + 3c = 5(ar) + 3(as) by substitution = a(5r + 3s) by algebra

and 5r+3s must be an integer by closure of integers. Therefore, by definition of divisibility $a \mid (5b+3c)$.

2. Case 1: Consider the case where n is even.

Let
$$n = 2r$$
, $r \in \mathbb{Z}$ then
 $n^2 + n + 1 = (2r)^2 + (2r) + 1$
 $= 2(2r^2 + r) + 1$

Since $(2r^2 + r) \in \mathbb{Z}$ by closure $n^2 + n + 1$ is odd by definition.

Case 2: Consider the case where n is odd.

Let n = 2r + 1, $r \in \mathbb{Z}$ then

$$n^{2} + n + 1 = (2r + 1)^{2} + (2r + 1) + 1$$
$$= 2(2r^{2} + 3r + 1) + 1$$

Since $(2r^2 + 3r + 1) \in \mathbb{Z}$ by closure $n^2 + n + 1$ is odd by definition.

3. Since $a \mid b$ by definition b = ar, $r \in \mathbb{Z}$ thus $b^2 = (ar)^2$ where $r^2 \in \mathbb{Z}$ by closure. Thus $= a^2 r^2$

 $a^2 \mid b^2$ by definition.

- 4. Let a = 6, b = 4, c = 3.
- 5. $n = 2^2 \cdot 3^2 \cdot 7 = 252$
- 6. $3^2 \cdot 7^2 \cdot 13$
- 7. Assumes what is to be proved is true without actually proving it is true. (Jumping to a conclusion.)
- 8. a) q = 3, r = 4 b) q = -4, r = 7
- 9. 0

10. Let m = 5q+2 and n = 5r+1 by definition. Then $\frac{mn = (5q+2)(5r+1)}{= 5(5qr+q+2r)+2}$ Where

 $5qr + q + 10r \in \mathbb{Z}$ by closure of integers. Therefore by definition $mn \mod 5 = 2$.

11. Case 1: $n = 3r (3r)(3r+1) = 3(3r^2+r)$, let $k = 3r^2+r$

Case 2:
$$n = 3r + 1$$
 $(3r+1)(3r+2) = 3(3r^2 + 3r) + 2$, let $k = 3r^2 + 3r$
Case 3: $n = 3r + 2$ $(3r+2)(3r+3) = 3(3r^2 + 5r + 2)$, let $k = 3r^2 + 5r + 2$.

- 12. The number must be an integer.
- 13. a) -7 b) -4
- 14. $\left[\frac{c}{m}\right]$
- 15. Proof by contradiction: Suppose there is an integer n such that n^3 is even and n is odd. Let n = 2k + 1 then $n^3 = (2k + 1)^3 = 2(4k^3 + 6k^2 + 3k) + 1$ let $t = 4k^3 + 6k^2 + 3k, t \in \mathbb{Z}$ by closure. Thus $n^3 = 2t + 1$ is odd by definition, which is a contradiction. Therefore, statement is true. Proof by contraposition: Suppose n is an odd integer, so let n = 2k + 1 then $n^3 = (2k + 1)^3 = 2(4k^3 + 6k^2 + 3k) + 1$ let $t = 4k^3 + 6k^2 + 3k, t \in \mathbb{Z}$ by closure. Thus $n^3 = 2t + 1$ is odd by definition. Therefore, proving the contrapositive is true thus the statement itself.
 - is odd by definition. Therefore, proving the contrapositive is true thus the statement itself is true.
- 16. Suppose there are integers m and $n \ni mn$ is even and m and n are both odd. Let m = 2k + 1 and n = 2r + 1 then mn = 2(2kr + k + r) + 1 letting t = 2kr + k + r, $t \in \mathbb{Z}$ by closure we have mn = 2t + 1 which is an odd integer by definition and therefore a contradiction.
- 17. Suppose $\exists r, s \in \mathbb{R} \Rightarrow r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$ and r+2s is rational. By definition $r = \frac{a}{b}$ and

$$r+2s = \frac{c}{d}$$
 with $a, b, c, d \in \mathbb{Z}$ and $b \neq 0$ and $d \neq 0$. Then using substitution and algebra we arrive at $s = \frac{bc-ad}{2bd}$ with $bc-ad \in \mathbb{Z}$ and $2bd \in \mathbb{Z}$ and $2bd \neq 0$ making s rational by

definition which is a contradiction.

18. False, all integers are rational numbers so consider x = 4.

19. a)
$$\sum_{k=2}^{n} (-3)^{k}$$
 b) $\prod_{n=2}^{6} (n-t^{n-1})$
20. a) $\frac{n(n+1)(n+2)}{6}$ b) $(n+1)^{2}$
21. a) $\sum_{k=m}^{n} (a_{k} - cb_{k})$ b) $\prod_{k=m}^{n} a_{k}b_{k}$
22. $P(1)$ $1^{3} = \frac{1^{2}(1+1)^{2}}{4}$
 $1 = 1$
 $P(k)$ $\sum_{i=1}^{k} i^{3} = \frac{k^{2}(k+1)^{2}}{4}$

Need to show P(k+1) $\sum_{i=1}^{k+1} i^3 = \frac{(k+1)^2 (k+2)^2}{4}$

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$
$$= \frac{k^2 (k+1)^2}{4} + (k+1)^3$$
$$= \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4}$$

LHS

RHS

$$\frac{(k+1)^2(k+2)^2}{4} = \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4}$$

Thus P(k+1) has been shown to be true.

23.
$$P(1)$$
 $\frac{1}{1 \cdot 2} = \frac{1}{1 + 1}$
 $\frac{1}{2} = \frac{1}{2}$

$$P(k) \quad \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

Need to show P(k+1) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)((k+1)+1)} = \frac{k+1}{(k+1)+1}$

LHS
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)((k+1)+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

RHS $\frac{k+1}{(k+1)+1} = \frac{k+1}{k+2}$

Thus P(k+1) has been shown to be true.

24.
$$P(0)$$
 $1 = \frac{3^{0+1} - 1}{2}$
= 1

$$P(k) 1+3+3^2+\ldots+3^k = \frac{3^{k+1}-1}{2}$$

Need to show
$$P(k+1)$$
 $1+3+3^2+...+3^k+3^{k+1}=\frac{3^{(k+1)+1}-1}{2}$

LHS
$$1+3+3^{2}+...+3^{k}+3^{k+1} = \frac{3^{k+1}-1}{2}+3^{k+1}$$
$$= \frac{3^{k+2}-1}{2}$$
RHS
$$\frac{3^{(k+1)+1}-1}{2} = \frac{3^{k+2}-1}{2}$$

Thus P(k+1) has been shown to be true.

25.
$$P(0) \ 7 \mid 0$$

 $P(k) \ 7 \mid (8^{k} - 1)$ by definition of divisibility $8^{k} - 1 = 7r, r \in \mathbb{Z}$
Need to show $P(k+1) \ 7 \mid (8^{k+1} - 1)$ this would mean that $8^{k+1} - 1 = 7s, s \in \mathbb{Z}$.
 $8^{k+1} - 1 = 8 \cdot 8^{k} - 8 + 7$
 $= 8(8^{k} - 1) + 7$
LHS $= 8(7r) + 7$ let $8r + 1 = s$
 $= 7(8r + 1)$
 $= 7s$
26. $P(3) \ 2(3) + 1 < 2^{3}$
 $P(k) \ 2k + 1 < 2^{k}$
Need to show $P(k+1) \qquad \frac{2(k+1) + 1 < 2^{k+1}}{2k + 1 + 2 < 2^{k} + 2 < 2 \cdot 2^{k} = 2^{k+1}}$